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Abstract

Motivated by the promising advances of deep-reinforcement learning
(DRL) applied to cooperative multi-agent systems we propose a model
and learning procedure to solve the Capacitated Multi-Vehicle Routing

Problem (CMVRP) with fixed fleet size. Our learning procedure follows
a centralized-training and decentralized-execution paradigm. We empiri-
cally test our model and showed its capability for producing near-optimal
solutions through cooperative actions. In large instances, our model gen-
erates better solutions than other commonly used heuristics. Additionally,
our model can solve arbitrary instances of the CMVRP without requiring
re-training.

1 Introduction

Given the impressive results of deep neural networks (DNN) in computer vision
and natural language processing tasks, there has been recent interest in their
incorporation to the reinforcement learning (RL) paradigm to tackle optimal
control and sequential decision-making problems. The implementation of RL
with DNN algorithms is referred to as deep-reinforcement learning (DRL) and
has been recently used to solve combinatorial-optimization problems [3].

In this work, we aim to apply DRL to provide an end-to-end method to
solve the Vehicle Routing Problem (VRP) with multiple vehicles and heteroge-
neous capacities. We propose a model and a training procedure to route a fleet
of vehicles with different capacities to act cooperatively and solve the routing
problem.

2 Related Work

Most previous works on using neural networks to solve combinatorial-optimization
problems as end-to-end methods formulate the problem, either, as a sequence
of inputs or as a graph representation.
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The pioneering work of [16] proposed an architecture called pointer networks
based on recurrent neural networks (RNN), that uses an attention mechanism,
as in [1], to create pointers to a fixed set as outputs which allows to solve
sequential combinatorial problems. Learning was achieved by maximizing the
conditional probability of the training set in a supervised-learning manner. The
training set consisted of a set of 2D points as inputs, and the solutions obtained
from an approximate solver as labels; this method was applied for solving the
Travelling Salesman Problem (TSP). A drawback of this method was the high
computational cost required for generating the training set.

In [2], DRL was applied to solve the TSP using a pointer network as the
policy function and an auxiliary network called critic to learn the expected tour
length of an input sequence; training was achieved using the Advantage Actor
Critic (A2C) algorithm (see [15]). More recently, [13] applied a DRL model to
produce near-optimal solutions for the VRP, generalizing the model in [2] by
considering a dynamic system.

With respect to graph representations, [5] used a neural network architec-
ture called structure2vec to represent the problem instance as a latent space
vector; together with RL, their method was applied to solve various combinato-
rial problems. This formulation, however, could not be applied to the VRP since
it assumed that the graph is static through time. In [11], an attention graph
network is used to represent the problem instances as vectors; the method pro-
duces competitive solutions for various combinatorial problems, including the
VRP.

In this work, we extend the model proposed in [13]. Because of its sequential
nature and simplicity, it is useful for the formulation of the sequential decision
making of multiple agents.

3 Background

3.1 Capacitated Vehicle Routing Problem

We consider an specific instance of the VRP in which N vehicles, each with
specific capacity, must deliver items to M customers, each with finite specific
demand. It is further assumed that all demands are smaller than the vehicle
capacity. In order to satisfy the demand of each customer the vehicles must
create routes starting and ending at a depot node. When the vehicle’s load runs
out, it returns to the depot to refill. The objective is to minimize the total route
length of all vehicles while satisfying the demand of all customers. This problem
can be termed the Fleet Size and Mix Vehicle Routing Problem (FSMVRP) [6]
with a fixed fleet size. We call it the Capacitated Multi-Vehicle Routing Problem
(CMVRP) but we will refer to it as the VRP throughout this work.

The mathematical programming formulation of this problem yields an expo-
nential number of constraints with respect to the number of customers, making
it computationally intractable for medium-to-large size problems.
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3.2 Sequence-to-Sequence Learning

Each agent is sequentially given an input to make a decision at each timestep—
the mechanism used to generate the decisions followed by each agent is its policy.
Since decisions must be made sequentially, it seems natural to model this policy
as a sequence-to-sequence model.

Given an input sequence Xt = {xi}
t
i=0 the model finds the conditional prob-

ability of the output sequence Yt = {yi}
t
i=0 [14]. By assuming the Markov

property, we can express this as

P (y0, ..., yT |x0, ..., xT ) =
T
∏

t=0

P (yt+1|Yt, Xt). (1)

Recurrent neural networks are commonly used in sequence-to-sequence models
to estimate this conditional probability.

3.3 Attention Mechanism

A sequence-to-sequence model assumes that the output sequence is formed by
elements of a fixed set. Unlike the sequence-to-sequence model, the VRP solu-
tion (output) is a permutation of the problem nodes (input). To achieve this
required behaviour we use a mechanism called attention (see, for example, [1],
[16], and [13]).

This technique is used to query information from all elements in the input-
nodes set. To construct the output sequence, an affinity function is evaluated,
with each node and the last output of the model, to generate a set of scalars.
Then, by applying the softmax function to these scalars, we obtain the attention
given to each element of the input set at each timestep.

4 Method

Customer locations are considered on a 2D Euclidean space. Customers and
depot locations are randomly generated in the unit square. It is assumed that
the demand in each node, except the depot node, can take a discrete value
uniformly distributed between 1 and 9. Throughout this section we will use the
terms “agent” and “vehicle” interchangeably.

A problem instance P corresponds to a set of tuples

P
.
= {s,d, l,p}, (2)

where

• s = {si}Mi=1 are the coordinates of customers;

• d = {di}Mi=1 are the demand of customers;

• l = {lj}Nj=1 are the capacities of vehicles; and
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Figure 1: Actions of a fleet of 3 vehicles following decision procedures (a) Case
1: Agents make single, sequential and alternating action at each timestep, (b)
Case 2: Agents generate routes in a sequential and alternating order and (c)
Case 3: Agents make simultaneous actions at each timestep

• p = {pj}Nj=1 are the locations of vehicles.

The problem instance can be seen as the initial state of the problem. Agents
will act on the problem changing the original state. The state of the problem
at timestep t is Xt

.
= { s,dt, lt,pt }.

In our formulation, agents act cooperatively to satisfy the demand of all cus-
tomers. The policy of each agent is modeled with DNNs and trained using RL.
The work of [12] developed an algorithm—following the paradigm of centralize
training and decentralize execution—to train agents in cooperative and com-
petitive environments. Here each agent have their own policy which uses only
local information at execution. Unlike [12], we propose a training procedure
that allows our agents to access the information of all other agents and, thus,
the state of the environment is the same for all agents.

To train the agents we have to specify the decision procedure that agents
follow. This could be set in the following three cases.

Case 1: Agents make single, sequential and alternating action at

each timestep. In this procedure, the environment is stationary in the eyes
of all agents and the VRP is formulated as a Markov Decision Process (MDP).
This implies that each agent requires only information of the last state of the
environment to make a decision and do not care about other agents actions (see
Figure 1 (a)).

The policy of agent j with parameters θj is

πθj (a|s,dt, lt,pt). (3)

The formulation of the problem as an MDP implies that each agent has a
policy and the decisions are sequential and following the same order at each
timestep.
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This proposed decision procedure allows us to apply a policy gradient algo-
rithm to train different agents with different characteristics.

Case 2: Agents generate routes in a sequential and alternating

order. This procedure also considers that the environment is stationary and
that all agents have access to the same information. The vehicles are sorted by
capacity in descending order. Each agent starts at the depot and make a series
of actions until it returns to the depot; then the following agent have to make a
series of actions and so on. When an agent is making a decision all other agents
are in the depot so its policy does not need the information of positions and
loads of the other agents. Thus, the state is defined as Xt

.
= { s,dt }.

The policy of agent j with parameters θj is

πθj (a|s,dt). (4)

Figure 1 (b) depicts an example where the first vehicle started to generate
a route until it returns to the depot at timestep k. Then the next vehicle must
generate its route at timestep k + 1.

Case 3: Agents make simultaneous actions at each timestep. This
procedure cannot model the problem as an MDP (see Figure 1 (c)). If all agents
make an action simultaneously the observation which is based the agent to make
an action will change immediately after making an action, so the environment
states are not useful to make decisions. Another issue is the difficulty of simul-
taneously imposing the restrictions of the problem to the actions of all agents.

For example, if a customer hasn’t been visited by any agent then, in the next
timestep is possible for all agents to visit this customer which is not a desirable
behavior for the agents.

In what follows, we present a model and training algorithm for generating
solutions for the VRP considering the decision procedure described in Case 1.
In subsections A and B we will explain how policy in Equation (3) is modeled
and how the training is performed.

4.1 Architecture

Following A2C algorithm, we call the policy of each agent the actor network.
Additionally, this algorithm uses another neural network called the critic net-
work.

The actor network follows the architecture in [13]. We expand on what data
is feed into the encoder and also change how the attention mechanism is defined.
The actor network consists of a sequence-to-sequence model with an encoder,
decoder and attention mechanism (Figure 2). At each timestep t two inputs are
given: xt

.
= {(si, dit)

M
i }, which contains the information about the customers;

and zt
.
= {(ljt , p

j
t )

N
j }, which contains the information about the agents.

These inputs are given to an encoder which embeds into latent space vectors.
These embedded vectors are combined with the output ht of a decoder, to output
yt+1 that points to one of the elements of the input s ∈ xt. Furthermore, yt+1 is
the input for the next timestep of the decoder. If the vehicle j is taking an action
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at timestep t then the input for the decoder yt is the action taken by the previous
vehicle (more specifically, the position of the vehicle to make previous action).
This process generates a sequence and ends when a terminating condition is
satisfied, e.g., when a specific number of steps are completed.

In order to introduce the restrictions of the problem we use a masking pro-
cedure in the output of the actor networks which sets the log-probabilities of
infeasible actions to −∞.

4.1.1 Encoder

It consists of a series of embeddings, each receiving two inputs: xt and zt, at
timestep t. Each input have its own encoder to produce a D-dimensional vector.

4.1.2 Decoder

It is an RNN that receives the vehicle position yt and maintains a hidden state
ht ∈ R

D.

4.1.3 Attention Mechanism

Let x̄t = (s̄it, d̄
i
t) and z̄t = (l̄it, p̄

i
t) be the embedded inputs of the problem

instance and ht the hidden state of the decoder at timestep t. We concatenate
the embedding vectors x̄t and z̄t with the hidden state of the decoder ht and
do a linear transformation with the parameters W . We then apply a hyperbolic
tangent function (tanh) and multiply with the vector vT . Finally, we apply a
softmax to the output. Thus, we compute an attention vector as follows:

ut = vT tanh(W [x̄t; z̄t;ht]). (5)

Then, the conditional probability is defined as

P (yt+1|Yt, Xt) = softmax(ut). (6)

The learnable parameters of the attention mechanism are v and W . The agents
make a greedy action according to this conditional probability.

4.1.4 Critic

The critic is a feed-forward neural network which receives as input the static
elements s, and returns the estimated total reward of the problem instance.

4.2 Training

To train the networks we use a policy gradient method known as the A2C
algorithm. This algorithm uses two DNNs as function approximators: one is
called the actor network that parameterizes the stochastic policy to predict a
probability distribution over the next action at any given state; and the other
is the critic network that estimates the total reward for any problem instance.
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Figure 2: Proposed model for actor network (Case 1).

We parameterize a stochastic policy π with parameters θ for the embedding,
decoder, and attention mechanism. We iteratively improve the policy of each
agent j by estimating the gradient of the expected rewards J(πθj ) with respect
to the policy parameters, obtained by

∇θjJ(πθj ) = Eτj∼πθj
∇θj log P (τj |x; z; θj)

(

R(τj |πθj ;x; z)−

Vφ(sk)
)

≈
1

BT

B
∑

k=1

T
∑

t=0

∇θj log πj(a
k
t |x

k
t ; z

k
t ; θj)

(

R(τkj |πj ;x
k; zk)−

Vφ(sk)
)

.

(7)

Here Vφ(sk) is the critic shared between agents and it estimates the to-
tal reward solely from the nodes locations of problem instance k, sk; and
R(τk|π;xk; zk) is the total reward of the tours τk =

⋃N

j τkj given policy π =
⋃N

j πθj and problem instance k.
To reduce the variance in the gradients, we use the critic network. Thus, the

gradient is scaled by the advantage, which is the difference between the total
and estimated reward of the problem instance. The critic network is improved
via gradient descent according to

∇φ

1

B

B
∑

k=1

(

Vφ(sk)−R(τk|π;xk; zk)
)2

. (8)
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The update of the parameters is done following the Adam algorithm [10]. The
training procedure is described in Algorithm 1 where the generation of the tours
of the agents is detailed as well as the learning of the parameters.

Algorithm 1 A2C training for Routing a Heterogeneous Fleet of Vehicles (Case
1)

1: Initialize the actor network with parameters θj for agent j and critic network
with parameters φ.

2: Define number of timesteps T , batch size B and vehicles capacities lj for
j ∈ {1, ..., N}.

3: for n iterations do
4: Randomly sample a batch {(si, di0)

M
i=1}

B
k=1

, where si ∈ [0, 1]× [0, 1] and
di0 ∈ [1, 9] for i ∈ {1, ...,M}.

5: for t from 1 to T ×N do

6: for j from 1 to N do

7: choose a
j
t according to policy πθj (·|xt; zt; θi)

8: observe new state (xt+1, zt+1) according to transition function
f(·|ajt , x

j
t )

9: end for

10: end for

11: for j from 1 to N do

12: Compute ∇θj ⊲ As (7)
13: θj ←Adam (θj ,∇θj )
14: end for

15: Compute ∇φ ⊲ As (8)
16: φ← Adam (φ,∇φ)
17: end for

5 Experiments

We performed the experiments described in Table 1 over a test set of size 1000
and present the average tour lengths obtained. Note that testing Case 2 would
have resulted in infeasible run times because it does not allows parallel genera-
tion of the tours used for training.

Table 1: Experiments

Name No. Customers No. Vehicles Capacities
VRP10 10 3 10, 15, 20
VRP20 20 3 20, 30, 35
VRP50 50 3 60, 70, 80
VRP80 80 3 80, 100, 120
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The purpose of this experiment is to test our representation of the problem
and the proposed training procedure to analyze its results in comparison with
other methods. For this reason, we avoid to tune the training parameters in
order to sincere the results. The extensive research in deep learning has shown
that, in general, leveraging computation translates in better results. In this way,
we decide to perform a tractable number of iterations.

Our proposed method (which we will refer to as DRL) was compared with
Google’s OR-Tools [8], Clarke-Wright Savings Heuristic and Sweep Heuristic.
We used a successive approximation approach [9] with the Clarke-Wright Sav-
ings Heuristic (CW) [4]. With the Sweep Heuristic [17] we allowed a sequential
generation of tours. Given the total capacity of vehicles with respect to the
total possible demand of all customers we allow at most two tours per vehicle
to encourage the use of all vehicles. This was done to avoid the exploit of the
vehicle with the highest capacity which would have created a bottleneck.

We formulate the fleet size and mix vehicle routing problem (FSMVRP)
[6] and found an optimal solution using the Gurobi solver [7]. OR-Tools and
FSMVRP assume that each vehicle can make at most one tour, so the sum of
capacities of the vehicles must be larger than the total demand. Given this
restriction we must get a larger fleet so the algorithms could yield a feasible
solution, i.e., having two vehicles of the same capacity is equivalent to having
one vehicle making two tours. We were able to find the optimal solution only
for the VRP10 experiment. For VRP20 and larger instances, the computation
was too large to test on 1000 instances. For example, for an instance of VRP20
with three vehicles it took 2350 seconds to solve a single problem instance with
a 10% optimal gap.

Given the possibility of using heterogeneous fleet to the solve the VRP, we
proposed different problem instances to test this capability.

6 Results and conclusions

Table 2 shows the average tour lengths of the different methods along with our
proposed method DRL. The DRL method generates, on average, shorter tour
lengths than compared heuristics in large instances. Observe that as larger the
instance, greater is the difference between the DRL method and the heuristics.
Moreover, it shows that the generated tours of the DRL method had lower
standard deviation compared to these heuristics. As for the tours generated
by OR-Tools, these, on average, had shorter lengths compared to our proposed
method. Note that the decision procedure of Case 1 introduces bias to our
method by assuming that the optimal decisions must be in sequential and alter-
nating order between vehicles. This limits the solution space to only the ones
that follow this structure and could not be capable of generating better solutions
than OR-Tools which has more liberty on how to generate solutions. Since the
exact solution is intractable for large instances we do not present these values.

Our proposed method shows competitive run times compared to considered
heuristics (Table 3). OR-Tools presented much longer run times in average
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Table 2: Average tour length using different baselines over a test set of size 1000
Baseline VRP10 VRP20 VRP50 VRP80

mean std mean std mean std mean std
DRL 5.614 1.155 7.280 1.059 9.706 0.929 11.232 1.748
Sweep 5.510 1.695 10.137 2.306 24.128 4.894 37.164 4.626
CW 6.884 1.628 12.181 2.438 27.351 3.691 43.090 7.402

OR-Tools 5.484 1.238 6.121 0.852 8.428 0.819 10.970 1.017

Optimal 5.087 0 - - - - - -

compared with our proposed method. Gurobi run times are not presented for
large instances due to their computational intractability.

Table 3: Average run time (in seconds) using different baselines over a test set
of size 1000

DRL Sweep CW OR-Tools Gurobi
VRP10 0.018 0.009 0.004 0.017 6.697
VRP20 0.025 0.012 0.026 0.035 -
VRP50 0.102 0.029 0.315 0.118 -
VRP80 0.168 0.078 0.468 0.293 -

The results obtained showed the potential of DRL for generating better
policies to solve the problem of routing a fleet of vehicles with heterogeneous
capacities and to automate this task by finding a global optimal policy that can
be applied to arbitrary instances.

7 Conclusions and Future Work

We proposed a model and training procedure for finding near-optimal solutions
to the problem of routing multiple vehicles with heterogeneous capacities. Our
trained model generates better solutions than commonly used heuristics for
large instances; falling short to, however, Google’s OR-Tools. It is important
to note that our proposed model finds policies that can be used to automate
the task of routing a heterogeneous fleet for any configuration of nodes. This
is a limitation of methods like OR-Tools that need to set up and solve each
instance individually. Furthermore, our proposed method has competitive run
times compared to other methods.

As future work we are interested in developing a training algorithm for Case
2 that allows parallelization. This will likely generate better solutions since
this case is similar to the successive approximation approach. It would also
be interesting to develop training algorithms following the decision procedure of
Case 3 to allow several agents to make decisions simultaneously that are optimal
globally.
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